
by Frédéric Raynal

About the author:
Frédéric Raynal is preparing a
thesis about watermarking of
digital images at the INRIA
(Institut National de Recherche
en Informatique et
Automatique). Content:

What's that, xinetd ?•
Compilation &
Installation

•

Configuration•
Access Control•
Service defaults •
Configuring a service•
Port binding: the bind
attribute

•

Service redirection
towards an other
machine: the redirect
attribute

•

Special services•
Let's play a bit...•
Starting with a riddle•
chroot a service•
Conclusion•
pop3 server•
Bad configuration with
RH7.0, Mandrake 7.2
and maybe some others
...

•

Talkback form for this
article

•

xinetd

Abstract:

xinetd − eXtended InterNET services daemon − provides a good security against intrusion and reduces the
risks of Denial of Services (DoS) attacks. Like the well known couple (inetd+tcpd), it enables the
configuration of the access rights for a given machine, but it can do much more. In this article we will
discover its many features.

mailto:pappy@users.sourceforge.net
http://cgi.linuxfocus.org/cgi-bin/lftalkback?anum=175&lang=en
http://cgi.linuxfocus.org/cgi-bin/lftalkback?anum=175&lang=en

What's that, xinetd ?

The classical inetd helps controlling network connections to a computer. When a request comes to a port
managed by inetd, then inetd forwards it to a program called tcpd. Tcpd decides, in accordance with the
rules contained in the hosts.{allow, deny} files whether or not to grant the request. If the request is
allowed, then the the corresponding server process (e.g ftp) can be started. This mechanism is also referred to
as tcp_wrapper.

xinetd provides access control capabilities similar to the ones provided by tcp_wrapper. However, its
capabilities extend much further :

access control for TCP, UDP and RPC services (the latter ones aren't well supported yet).•
access control based on time segments•
full logging, either for connection success or failure•
efficient containment against Denial of Services (DoS) attacks (attacks which attempt to freeze a
machine by saturating its resources) :

•

limitation on the number of servers of the same type to run at a time♦
limitation on the total number of servers♦
limitation on the size of the log files.♦

binding of a service to a specific interface: this allows you, for instance, to make services available to
your private network but not to the outside world.

•

can be used as a proxy to other systems. Quite useful in combination with ip_masquerading (or
Network Address Translation − NAT) in order to reach the internal network.

•

The main drawback, as already mentioned, concerns poorly supported RPC calls. However, portmap can
coexist with xinetd to solve this.

The first part of this article explains how xinetd works. We'll spend some time on a service configuration, on
some specific options (binding to an interface, redirection) and demonstrate this with a few examples. The
second part shows xinetd at work, the logs it generates and finishes with a useful tip.

Compilation & Installation

You can get xinetd from www.xinetd.org. For this article we will use version 2.1.8.9pre10.
Compilation and installation are done in the classical way: the usual commands ./configure; make;
make install do it all :) configure supports the usual options. Three specific options are available at
compile time:

−−with−libwrap : with this option, xinetd checks the tcpd configuration files
(/etc/hosts.{allow, deny}) and if access is accepted, it then uses its own control routines.
For this option to work, tcp_wrapper and its libraries have to be installed on the machine (Author's
note: what can be done with the wrapper can also be done with xinetd. Allowing this compatibility
leads to multiplying the config files, and makes the administration heavier... in short, I don't
recommend it);

1.

−−with−loadavg : this option allows xinetd to handle the max_load configuration option. This
allows the deactivation of some services when the machine is overloaded. An options essential to
prevent some DoS attacks (check the attribute max_load in table 1);

2.

−−with−inet6 : if you feel like using IPv6, this option allows to support it. The IPv4 and IPv6
connections are managed, but IPv4 addresses are changed into IPv6 format.

3.

http://www.xinetd.org/

Before starting xinetd, you don't have to stop inetd. Nevertheless, not doing so may lead to an unpredictable
behavior of both daemons!

Some signals can be used to modify xinetd behavior:

SIGUSR1 : software re−configuration : the configuration file is re−read and the services parameters
are changed accordingly

•

SIGUSR2 : hardware re−configuration: as above, but furthermore, the outdated daemons are killed•
SIGTERM : ends xinetd and the daemons it generated•

There are a few others (let's mention a mistake in the documentation and the man pages: SIGHUP writes its
dump in the file /var/run/xinetd.dump and not in /tmp/xinetd.dump), but the three mentioned
above can be easily managed with a small script containing the start, stop, restart, soft, hard options (the latter
two respectively corresponding to SIGUSR1 and SIGUSR2).

Configuration

The /etc/xinetd.conf file is the default configuration file for the xinetd daemon (a command line
option allows to provide another one). The xinetd configuration is not very complex, but it may be a long
work and the syntax is unfortunately quite different from that of its predecessor inetd.

Two utilities (itox and xconv.pl) are provided with xinetd and allow to convert the
/etc/inetd.conf file into a configuration file for xinetd. Obviously, that's not enough since the rules
specified in the wrapper configuration are ignored. The itox program, still maintained, is no longer
developed. The xconv.pl program is a better solution, even if the result has to be modified because of
features that xinetd has in addition to inetd:

>>/usr/local/sbin/xconv.pl < /etc/inetd.conf >
/etc/xinetd.conf

The configuration file begins with a default section. The attributes in this section will be used by every service
xinetd manages. After that, you will find as many sections as there are services, each of them being able to
re−define specific options in relation to the default ones.

The default values section looks like:

defaults
{
 attribute operator value(s)
 ...
}

Each attribute defined in this section keeps the provided value(s) for all services described thereafter. Thus,
the only_from attribute, allows to give a list of authorized addresses that should be able to connect to
servers:

only_from = 192.168.1.0/24 192.168.5.0/24 192.168.10.17

Every service declared thereafter will allow access from machines having an address contained in the list.
However, these default values can be modified for each service (check the operators, explained a bit further
down). Nevertheless, this process is a bit risky. As a matter of fact, to keep things simple and secure, it's much
better not to define default values and change them later on within a service. For instance, talking about access
rights, the simplest policy consists in denying access to everyone and next allowing access to each service to
those who really need it (with tcp_wrapper, this is done from an hosts.deny file containing

ALL:ALL@ALL, and an hosts.allow file only providing authorized services and addresses).

Each section describing a service in the config file looks like:

serviceservice_name
{
 attribute operator value(s)
 ...
}

Three operators are available: '=', '+=' and '−='. Most of the attributes only support the '=' operator, used to
assign a fix value to an attribute. The '+=' operator adds an item to a list of values, while the '−=' operator
removes this item.

The table 1 briefly describes some of these attributes. We'll see how to use them with a few examples.
Reading the xinetd.confman page provides more information.

Tab. 1 : a few attributes for xinetd

Attribute Values and description

flags

Only the most current values are mentioned here, check the documentation to find new
ones:

IDONLY : only accepts connexions from clients having an identification
server;

•

NORETRY : avoids a new process to be forked again in case of failure;•
NAMEINARGS : the first argument of the server_args attribute is used as
argv[0] for the server. This allows to use tcpd by putting it in the
server attribute, next writing the server name and its arguments such as
server_args, as you would do with inetd.

•

log_type

xinetd uses syslogd and the daemon.info selector by default.

SYSLOG selector [level] : allows to choose among daemon, auth, user or
local0−7 from syslogd ;

•

FILE [max_size [absolute_max_size]] : the specified file receives information.
The two options set the file size limit. When the size is reached, the first one
sends a message to syslogd, the second one stops the logging for this service (if
it's a common file − or fixed by default − then various services can be
concerned).

•

log_on_success

Different information can be logged when a server starts:

PID : the server's PID (if it's an internal xinetd service, the PID has then a value
of 0) ;

•

HOST : the client address ;•
USERID : the identity of the remote user, according to RFC1413 defining
identification protocol;

•

EXIT : the process exit status;•
DURATION : the session duration.•

log_on_failure Here again, xinetd can log a lot of information when a server can't start, either by lack
of resources or because of access rules:

HOST, USERID : like above mentioned ;•

http://www.ietf.org/rfc/rfc1413.txt

ATTEMPT : logs an access attempt. This an automatic option as soon as
another value is provided;

•

RECORD : logs every information available on the client.•
nice Changes the server priority like the nice command does.

no_access List of clients not having access to this service.

only_from
List of authorized clients. If this attribute has no value, the access to the service is
denied.

port
The port associated to the service. If it's also defined in the /etc/services file, the
2 port numbers must match.

protocol
The specified protocol must exist in the /etc/protocols file. If no protocol is
given, the service's default one is used instead.

server The path to the server.

server_args Arguments to be given to the server.

socket_type stream (TCP), dgram (UDP), raw (IP direct access) or seqpacket ().

type

xinetd can manage 3 types of services :

RPC : for those defined in the /etc/rpc file... but doesn't work very well;1.
INTERNAL : for services directly managed by xinetd (echo, time,
daytime, chargen and discard) ;

2.

UNLISTED : for services not defined either in the /etc/rpc file, or in the
/etc/services file ;

3.

Let's note it's possible to combine various values, as we'll see with servers,
services and xadmin internal services.

wait

Defines the service behavior towards threads. Two values are acceptable:

yes : the service is mono−thread, only one connexion of this type can be
managed by the service;

•

no : a new server is started by xinetd for each new service request according to
the defined maximum limit (Warning, by default this limit is infinite).

•

cps
Limits the number of incoming connexions. The first argument is this number itself.
When the threshold is exceeded, the service is deactivated for a given time, expressed in
seconds, provided with the second argument.

instances Defines the maximum number of servers of a same type able to work at the same time.

max_load
This gives really the maximum load for a server (for example, 2 or 2.5). Beyond this
limit, requests on this server are rejected.

per_source
Either an integer, or UNLIMITED, to restrict the number of connexion from a same
origin to a server

The four last attributes shown in table1 allow to control the resources depending on a server. This is efficient
to protect from Denial of Service (DoS) attacks (freezing a machine by using all of its resources)

This section presented a few xinetd features. The next sections show how to use it and give some rules to
make it work properly.

Access Control

As we have seen previously, you can grant (or forbid) access to your box by using IP addresses. However,
xinetd allows more features :

you can do access control by hostname resolution. When doing this, xinetd does a lookup on the
hostname(s) specified _for every connection_, and compares the connecting address to the addresses
returned for the hostname(s) ;

•

you can do access control by .domain.com. When a client connects, xinetd will reverse lookup the
connecting address, and see if it is in the specified domain.

•

To optimize things, obviously IP addresses are obviously better, that way you avoid name lookup(s) on
incoming connections to that service. If you must do access control by the hostname, you can significantly
speed things up if you run a local (at least a caching) name server. It's even better if you are using domain
sockets to perform your address lookup (don't put a nameserver entry in /etc/resolv.conf).

Service defaults

The defaults section allows setting values for an number of attributes (check the documentation for the
whole list). Some of these attributes (only_from, no_access, log_on_success,
log_on_failure, ...) hold simultaneously the values allocated in this section and the ones provided in the
services.

By default, denying access to a machine, is the first step of a reliable security policy. Next, allowing access
will be configured on a per−service basis. We've seen two attributes allowing to control access to a machine,
based on IP addresses: only_from and no_access. Selecting the second one we write:

no_access = 0.0.0.0/0

which fully blocks services access. However, if you wish to allow everyone to access echo (ping) for
instance, you then should write in the echo service:

only_from = 0.0.0.0/0

Here is the logging message you get with this configuration:

Sep 17 15:11:12 charly xinetd[26686]: Service=echo−stream:
only_from list and no_access list match equally the address
192.168.1.1

Specifically, the access control is done comparing the lists of addresses contained in both attributes. When the
client address matches the both lists, the least general one is preferred. In case of equality, like in our example,
xinetd is unable to choose and refuses the connexion. To get rid of this ambiguity, you should have written:

only_from = 192.0.0.0/8

An easier solution is to only control the access with the attribute:

only_from =

Not giving a value makes every connexion fail :) Then, every service allows access by means of this same
attribute.

Important, not to say essential: in case of no access rules at all (i.e. neither only_from, nor no_access)
for a given service (allocated either directly or with the default) section, the access to the service is
allowed!

Here is an example of defaults :

defaults
{
 instances = 15
 log_type = FILE /var/log/servicelog
 log_on_success = HOST PID USERID DURATION EXIT
 log_on_failure = HOST USERID RECORD
 only_from =
 per_source = 5

 disabled = shell login exec comsat
 disabled = telnet ftp
 disabled = name uucp tftp
 disabled = finger systat netstat

 #INTERNAL
 disabled = time daytime chargen servers services xadmin

 #RPC
 disabled = rstatd rquotad rusersd sprayd walld
}

among internal services, servers, services, and xadmin allow to manage xinetd. More on this later.

Configuring a service

To configure a service, we need ...nothing :) In fact, everything works like it does with defaults values: you
just have to precise the attributes and their value(s) to manage the service. This implies either a change in the
defaults values or another attribute for this service.

Some attributes must be present according to the type of service (INTERNAL, UNLISTED ou RPC) :

Tab. 2: required attributes

Attribute Comment

socket−type Every service.

user Only for non INTERNAL services

server Only for non INTERNAL services

wait Every service.

protocol
Every RPC service and the ones not contained
in /etc/services.

rpc_version Every RPC service.

rpc_number
Every RPC service, not contained in
/etc/rpc.

port
Every non RPC service, not contained in
/etc/services.

This example shows how to define services:

service ntalk
{
 socket_type = dgram

 wait = yes
 user = nobody
 server = /usr/sbin/in.ntalkd
 only_from = 192.168.1.0/24
}

service ftp
{
 socket_type = stream
 wait = no
 user = root
 server = /usr/sbin/in.ftpd
 server_args = −l
 instances = 4
 access_times = 7:00−12:30 13:30−21:00
 nice = 10
 only_from = 192.168.1.0/24
}

 Let's note that these services are only allowed on the local network (192.168.1.0/24). Concerning FTP, some
more restrictions are expected: only four instances are allowed and the service will be available only during
certain segments of time.

Port binding: the bind attribute

This attribute allows the binding of a service to a specific IP address. This is only useful when a machine has
at least two network interfaces, for example a computer beeing part of a local network and connected to
Internet through a separate interface.

For instance, a company wishes to install an FTP server for its employees (to access and read internal
documentation). This company wants to provide its clients with an FTP access towards its products: bind has
been made for this company :) The solution is to define two separate FTP services, one for public access, and
a second one for internal company access only. However, xinetd must be able to differentiate them: the
solution is to use the id attribute. It defines a service in a unique way (when not defined within a service, its
value defaults to the name of the service).

service ftp
{
 id = ftp−public
 wait = no
 user = root
 server = /usr/sbin/in.ftpd
 server_args = −l
 instances = 4
 nice = 10
 only_from = 0.0.0.0/0 #allows every client
 bind = 212.198.253.142 #public IP address for this
server
}

service ftp
{
 id = ftp−internal
 socket_type = stream

 wait = no
 user = root
 server = /usr/sbin/in.ftpd
 server_args = −l
 only_from = 192.168.1.0/24 #only for internal use
 bind = 192.168.1.1 #local IP address for this
server (charly)
}

The use of bind will allow to call the corresponding daemon, according to the destination of the packets.
Thus, with this configuration, a client on the local network must give the local address (or the associated
name) to access internal data. In the log file, you can read:

00/9/17@16:47:46: START: ftp−public pid=26861
from=212.198.253.142
00/9/17@16:47:46: EXIT: ftp−public status=0 pid=26861
duration=30(sec)
00/9/17@16:48:19: START: ftp−internal pid=26864
from=192.168.1.1
00/9/17@16:48:19: EXIT: ftp−internal status=0 pid=26864
duration=15(sec)

The first part comes from the command ftp 212.198.253.142, while the second part is about the
command from charly to itself: ftp 192.168.1.1.

Obviously, there's a problem: what happens if a machine doesn't have two static IP addresses? This can
happen with ppp connections or when using the dhcp protocol. It seems it would be much better to bind
services to interfaces than to addresses. However, this is not yet supported in xinetd and is a real problem (for
instance, writing a C module to access an interface or address depends on the OS, and since xinetd is
supported on many OSes...). Using a script solves the problem:

#!/bin/sh

PUBLIC_ADDRESS=`/sbin/ifconfig $1 | grep "inet addr" | awk
'{print $2}'| awk −F: '{print $2}'`
sed s/PUBLIC_ADDRESS/"$PUBLIC_ADDRESS"/g /etc/xinetd.base >
/etc/xinetd.conf

This script takes the /etc/xinetd.base file, containing the desired configuration with
PUBLIC_ADDRESS as a replacement for the dynamic address, and changes it in /etc/xinetd.conf,
modifying the PUBLIC_ADDRESS string with the address associated to the interface passed as an argument
to the script. Next, the call to this script depends on the type of connection: the simplest is to add the call into
the right ifup−* file and to restart xinetd.

Service redirection towards an other machine: the redirect
attribute

xinetd can be used as a transparent proxy, sort of (well, almost ... as we'll see it later) with the redirect
attribute. It allows to send a service request towards an other machine to the desired port.

service telnet
{
 flags = REUSE

 socket_type = stream
 wait = no
 user = root
 server = /usr/sbin/in.telnetd
 only_from = 192.168.1.0/24
 redirect = 192.168.1.15 23
}

Let's watch what's going on now:

>>telnet charly
Trying 192.168.1.1...
Connected to charly.
Escape character is '^]'.

Digital UNIX (sabrina) (ttyp1)

login:

At first, the connection seems to be established on charly, but the following shows that sabrina (an alpha
machine, hence "Digital UNIX") took over. This mecanism can be both useful and dangerous. When
setting it up, logging must be done on both ends of the connection. Furthermore, for this type of service, the
use of DMZ and firewall is strongly recommended;−)

Special services

Three services only belong to xinetd. Since these services can't be found in /etc/rpc or /etc/services, they must
have the UNLISTED flag (besides the INTERNAL flag informing they are xinetd services)

servers: informs about servers in use ;1.
services: informs about available services, their protocol and their port ;2.
xadmin: mixes the functions of the two previous ones.3.

Obviously, these services make your computer more vulnerable. since they provide important information.
Presently, their access is not protected (password protected, for instance). You should use them only at
configuration time. Next, in the defaults section, you must deny their use:

defaults {
 ...
 disabled = servers services xadmin
 ...
}

Before activating them, you should take some precautions:

The machine running xinetd must be the only one able to connect to these services1.
Limit the number of instances to one2.
Allow access only from the machine running the server.3.

Let's take the example of the xadmin service (the two others can be configured in the same way, apart from
the port number ;−) :

service xadmin
{
 type = INTERNAL UNLISTED
 port = 9100
 protocol = tcp
 socket_type = stream
 wait = no
 instances = 1
 only_from = 192.168.1.1 #charly
}

The xadmin service has 5 commands :

help ...1.
show run : like the servers service, informs about the presently running servers2.
show avail : like the services service, informs about the available services (and a bit more)3.
bye or exit ...4.

Now, you know they exist: forget them ;−) You can test without these services. Commands such as
(netstat, fuser, lsof, ... allow you to know what's going on on your machine, without making it
vulnerable as you would when using these services!

Let's play a bit...

Starting with a riddle

Here is a small exercise for the ones who survived ;−) First I will explain configuration used in this exercise
and then we will try to find out what happens and why it does not work.

We only need the finger service :

service finger
{
 flags = REUSE NAMEINARGS
 server = /usr/sbin/tcpd
 server_args = in.fingerd
 socket_type = stream
 wait = no
 user = nobody
 only_from = 192.168.1.1 #charly
}

xinetd wasn't compiled with the −−with−libwrap option (check the attribute server). The defaults
section is of the same kind of the one previously provided: every access to charly is denied wherever the
connexion comes from. The finger service is not deactivated, nevertheless:

pappy@charly >> finger pappy@charly
[charly]
pappy@charly >>

pappy@bosley >> finger pappy@charly
[charly]

pappy@bosley >>

It seems the request didn't work properly, neither from charly (192.168.1.1), an authorized machine, nor
from bosley (192.168.1.10). Let's have a look at the log files:

/var/log/servicelog :
00/9/18@17:15:42: START: finger pid=28857 from=192.168.1.1
00/9/18@17:15:47: EXIT: finger status=0 pid=28857
duration=5(sec)
00/9/18@17:15:55: FAIL: finger address from=192.168.1.10

The request from charly (the two first lines) works properly according to xinetd: the access is allowed and
the request takes 5 seconds. On the other hand, the request from bosley is rejected (FAIL).
If we look at the configuration of the finger service, the server used is not really in.fingerd, but the
tcp_wrapper tcpd service. The wrapper log says:

/var/log/services :
Sep 18 17:15:42 charly in.fingerd[28857]: refused connect from
192.168.1.1

We see that there's only one line matching our two queries! The one from bosley (the second one) was
intercepted by xinetd, so it's quite normal not to find it in that log. The selected line really corresponds to the
request xinetd allowed, sent from charly to charly (the first one): time and PID are identical.

Let's summarize what we have:

xinetd allowed the request;1.
the finger request goes through tcpd ;2.
in.fingerd rejected this request.3.

What's going on, then? Since the request is accepted by xinetd, it's sent to the specified server (here tcpd).
Nevertheless, tcpd rejects this connection. Then, we must have a look at hosts.{allow,deny}. The
/etc/hosts.deny file only contains ALL:ALL@ALL, what explains why the request has been rejected by
the wrapper!

According to the way the server and server_args service lines have been defined, the wrapper features
are still accessible (banner − there's a banner attribute in xinetd−, spawn, twist, ...). Remember that the
−−with−libwrap compilation option only adds access rights control (with the help of
hosts.{allow,deny} files), before xinetd process starts. In this example we saw that this configuration
allows us to continue using the tcp wrapper features.

This overlapping of features, if it can work, may as well lead to stange behaviors. To use xinetd together with
inetd and portmap, it's much better to manage a service with only one of these "super−daemons".

chroot a service

It's often suggested to restrict the fields of some services, or to create a new environment. The chroot
command allows to change the root directory for a command (or a script):

chroot [options] new_root

This is often used to protect services such as bind/DNS or ftp. To duplicate this behavior while benefiting
from xinetd features, you have to declare chroot as a server. Then, you just have to pass other arguments

via the server_args attribute :)

service ftp
{
 id = ftp
 socket_type = stream
 wait = no
 user = root
 server = /usr/sbin/chroot
 server_args = /var/servers/ftp /usr/sbin/in.ftpd −l
}

Thus, when a request is sent to this service, the first instruction used is chroot. Next, the first argument
passed to it is the first one on the server_args line, that is the new root. Last, the server is started.

Conclusion

You could now ask yourself which daemon to choose from xinetd or inetd. xinetd offers more features , but it
requires a bit more administration, especially until it is included by default in the into distributions (it is now
true for most of them). The most secure solution is to use xinetd on machines with public access (like Internet)
since it offers a better defense. For machines within a local network inetd should be enough.

pop3 server

pop3 seems to be very popular : I recieved mails asking me how to handle it throught xinetd. Here is a
sample configuration :

 service pop3
 {
 disable = no
 socket_type = stream
 wait = no
 user = root
 server = /usr/sbin/ipop3d
 # log_on_success += USERID
 # log_on_failure += USERID
 }

Of course, you have to put your own path for the server attribute.

the use of pop3 throught xinetd could be painful, depending on the values you use for logging. For
instance the use of USERID send a request from your xinetd to an identd server hosted at the pop's
client. If no such server is available, a timeout is waited for 30 seconds.

So, when somebody tries to get his mail, he have to wait at least for those 30 seconds if no identd server
responds. You have to choose between :

install an identd server on all the clients so your logs are very sharp (take care, one can change the
informations provided by identd) ;

1.

decrease the quality of your logging for that service so that your users could get their mails quickly.2.

Bad configuration with RH7.0, Mandrake 7.2 and maybe some others ...

bug 24279 send to bugzilla.

Some services configured in /etc/xinetd.d are not defined in the file /etc/services.

[pappy@rootdurum xinetd.d]# grep service *udp
chargen−udp:service chargen−udp
daytime−udp:service daytime−udp
echo−udp:service echo−udp
time−udp:service time

I've sublitted a fix ... but the RH's guy doesn't like it ;−(He says it can cause troubles with some other tools
such as chkconfig and ntsysv. If I had to choice between those tools and xinetd, I already know what
I pick ;−)
Last modified: Wed Feb 28 10:15:27 CET 2001

Talkback form for this article

Every article has its own talkback page. On this page you can submit a comment or look at comments from
other readers:

 talkback page

Webpages maintained by the LinuxFocus Editor team
© Frédéric Raynal, FDL

LinuxFocus.org
Click here to report a fault or send a comment to LinuxFocus

Translation information:
fr −> −− Frédéric Raynal

fr −> en Georges Tarbouriech

2001−03−01, generated by lfparser version 2.10

http://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=24279
http://cgi.linuxfocus.org/cgi-bin/lftalkback?anum=175&lang=en
http://www.linuxfocus.org
http://cgi.linuxfocus.org/cgi-bin/lfcomment?lang=en&article=article175.shtml
mailto:pappy@users.sourceforge.net
mailto:georges.t@linuxfocus.org

